29 research outputs found

    A Second Large Subglacial Impact Crater in Northwest Greenland?

    Get PDF
    Following the discovery of the Hiawatha impact crater beneath the northwest margin of the Greenland Ice Sheet, we explored satellite and aerogeophysical data in search of additional such craters. Here we report the discovery of a possible second subglacial impact crater that is 36.5 km wide and 183 km southeast of the Hiawatha impact crater. Although buried by 2 km of ice, the structure's rim induces a conspicuously circular surface expression, it possesses a central uplift and it causes a negative gravity anomaly. The existence of two closely-spaced and similarlysized complex craters raises the possibility that they formed during related impact events. However, the second structure's morphology is shallower, its overlying ice is conformal and older, and such an event can be explained by chance. We conclude that the identified structure is very likely an impact crater, but it is unlikely to be a twin of the Hiawatha impact crater

    A Possible Second Large Subglacial Impact Crater in Northwest Greenland

    Get PDF
    Following the discovery of the Hiawatha impact crater beneath the northwest margin of the Greenland Ice Sheet, we explored satellite and aerogeophysical data in search of additional such craters. Here we report the discovery of a possible second subglacial impact crater that is 36.5 km wide and 183 km southeast of the Hiawatha impact crater. Although buried by 2 km of ice, the structure's rim induces a conspicuously circular surface expression, it possesses a central uplift and it causes a negative gravity anomaly. The existence of two closely-spaced and similarlysized complex craters raises the possibility that they formed during related impact events. However, the second structure's morphology is shallower, its overlying ice is conformal and older, and such an event can be explained by chance. We conclude that the identified structure is very likely an impact crater, but it is unlikely to be a twin of the Hiawatha impact crater

    Recurring dynamically-induced thinning during 1985-2010 on Upernavik Isstrøm, West Greenland

    Get PDF
    This is the publisher's version, also available electronically from "http://onlinelibrary.wiley.com".1] Many glaciers along the southeast and northwest coasts of Greenland have accelerated, increasing the ice sheet's contribution to global sea-level rise. In this article, we map elevation changes on Upernavik Isstrøm (UI), West Greenland, during 2003to 2009 using high-resolution ice, cloud and land elevation satellite laser altimeter data supplemented with altimeter surveys from NASA's Airborne Topographic Mapper during 2002 to 2010. To assess thinning prior to 2002, we analyze aerial photographs from 1985. We document at least two distinct periods of dynamically induced ice loss during 1985 to 2010 characterized by a rapid retreat of the calving front, increased ice speed, and lowering of the ice surface. The first period occurred before 1991, whereas the latter occurred during 2005 to 2009. Analyses of air and sea-surface temperature suggest a combination of relatively warm air and ocean water as a potential trigger for the dynamically induced ice loss. We estimate a total catchment-wide ice-mass loss of UI caused by the two events of 72.3 ± 15.8 Gt during 1985 to 2010, whereas the total melt-induced ice-mass loss during this same period is 19.8 ± 2.8 Gt. Thus, 79% of the total ice-mass loss of the UI catchment was caused by ice dynamics, indicating the importance of including dynamically induced ice loss in the total mass change budget of the Greenland ice sheet

    Constraints on the Late Saalian to early Middle Weichselian ice sheet of Eurasia from field data and rebound modelling

    No full text
    Using glacial rebound models we have inverted observations of crustal rebound and shoreline locations to estimate the ice thickness for the major glaciations over northern Eurasia and to predict the palaeo-topography from late MIS-6 (the Late Saalian at c. 140 kyr BP) to MIS-4e (early Middle Weichselian at c. 64 kyr BP). During the Late Saalian, the ice extended across northern Europe and Russia with a broad dome centred from the Kara Sea to Karelia that reached a maximum thickness of c. 4500 m and ice surface elevation of c. 3500 m above sea level. A secondary dome occurred over Finland with ice thickness and surface elevation of 4000 m and 3000 m, respectively. When ice retreat commenced, and before the onset of the warm phase of the early Eemian, extensive marine flooding occurred from the Atlantic to the Urals and, once the ice retreated from the Urals, to the Taymyr Peninsula. The Baltic - White Sea connection is predicted to have closed at about 129 kyr BP, although large areas of arctic Russia remained submerged until the end of the Eemian. During the stadials (MIS-5d, 5b, 4) the maximum ice was centred over the Kara - Barents Seas with a thickness not exceeding c. 1200 m. Ice-dammed lakes and the elevations of sills are predicted for the major glacial phases and used to test the ice models. Large lakes are predicted for west Siberia at the end of the Saalian and during MIS-5d, 5b and 4, with the lake levels, margin locations and outlets depending inter alia on ice thickness and isostatic adjustment. During the Saalian and MIS-5d, 5b these lakes overflowed through the Turgay pass into the Aral Sea, but during MIS-4 the overflow is predicted to have occurred north of the Urals. West of the Urals the palaeo-lake predictions are strongly controlled by whether the Kara Ice Sheet dammed the White Sea. If it did, then the lake levels are controlled by the topography of the Dvina basin with overflow directed into the Kama - Volga river system. Comparisons of predicted with observed MIS-5b lake levels of Komi Lake favour models in which the White Sea was in contact with the Barents Sea

    Climate variability and glacial processes in eastern Iceland during the past 700 years based on varved lake sediments

    No full text
    Properties of varved sediments from Lake Logurinn in eastern Iceland and their link to climate and glacial processes of Eyjabakkajokull, an outlet glacier of the Vatnajokull icecap, were examined. A varve chronology, which covers the period AD 1262-2005, was constructed from visual observations, high-resolution images, X-ray density and geochemical properties determined from X-radiography and X-ray fluorescence scanning. Independent dating provided by 137Cs analysis and eight historical tephras verify the varve chronology. The thickness of dark-coloured seasonal laminae, formed mainly of coarser suspended matter from the non-glacial river Grimsa, is positively correlated (r=0.70) with winter precipitation, and our 743-year-long varve series indicates that precipitation was higher and more varied during the later part of the Little Ice Age. Light-coloured laminae thickness, controlled mainly by the amount of finer suspended matter from the glacial river Jokulsa i Fljotsdal, increased significantly during the AD 1972 surge of Eyjabakkajokull. As a consequence of the surge, the ice-dammed Lake Haoldulon formed and recurrently drained and delivered significant amounts of rock flour to Lake Logurinn. Based on these observations, and the recurring cyclic pattern of periods of thicker light-coloured laminae in the sediment record, we suggest that Eyjabakkajokull has surged repeatedly during the past 743 years, but with an increased frequency during the later part of the Little Ice Age

    Spatial distribution of erosion and deposition during a glacier surge: Bruarjokull, Iceland

    No full text
    Time-series of digital elevation models (DEMs) of the forefield of the Bruarjokull surge-type glacier in Iceland were used to quantify the volume of material that was mobilized by the 1963-1964 surge. The DEMs were produced by stereophotogrammetry on aerial photographs from before the surge (1961) and after (1988 and 2003). The analysis was performed on two DEMs of Difference (DoDs), i.e., a 1961-2003 DoD documenting the impact of the surge and a 1988-2003 DoD documenting the post-surge modification of the juvenile surging glacier landsystem. Combined with a digital geomorphological map, the DoDs allow us to quantify the impact of the surge on a landsystem scale down to individual landforms. A total of 34.2 +/- 11.3 x 10(6) m(3) of material was mobilized in the 30.7-km(2) study area as a result of the most recent surge event Of these, 17.4 +/- 6.6 x 10(6) m(3) of the material were eroded and 16.8 +/- 4.7 x 10(6) m(3) were deposited. More than half of the deposited volume was ice-cored landforms. This study demonstrates that although the total mobilized mass volume is high, the net volume gain of ice and sediment deposited as landforms in the forefield caused by the surge is low. Furthermore, deposition of new dead-ice from the 1963-1964 surge constitutes as much as 64% of the volume gain in the forefield. The 1988-2003 DoD is used to quantify the melt-out of this dead-ice and other paraglacial modification of the recently deglaciated forefield of Bruarjokull. (C) 2015 Elsevier B.V. All rights reserved
    corecore